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Abstract-The use of the boundary element method for the solution of linear elastic fracture
mechanics problems. without body forces. is quite extensive since the method is intrinsically well
suited to the analysis of high stress gradients associated with crack problems. The crack-tip stresses
for rotating bodies are similar to the stresses for stationary bodies and therefore all the advantages
of the boundary element procedure can be encompassed in the el\tension of the method to the
solution of rotating bodies with cracks. In the present analysis. the additional volume integral that
arises from the treatment of inertial body forces is eliminated by using the well-known particular
integral procedure. The matril\ iII-conditioning that results from the need to model co-planar crack
surf.l\:es of non-symmetrical cracks is avoided by using the multi-region approach. The accuracy of
the numerical solutions is improved by utilizing quarter-point elements with traction singular
enhancement at the crack-tip. The procedure is then applied to the solution of arbitrary cracks in
two- ;md three-dimensional rotating bodies.

l. INTRODUCTION

Machinery wilh crack-like flaws. rot"ting at high speeds. may fail due to the weakening of
flawed components. Since the strength ofa cracked structural member may be characterized
by the stress intensity l~tctor (SIF). the evaluation of this pammeter plays an important
role in hoth numerical and experimental stress analyses. Investigation of rotating bodies
with cracks h.ts been performed by many investigators. For example, internal as well as
edge cracks in finite rotating disks were solved by Rooke and Tweed (1972. 1973) in terms
of the solution of" Fredholm integr,,1 equation; problems of cracks em"nating from a
central hole were solved by Owen and Grillilhs (1973) and Riccardell'l and Bamford (1974)
using the finite clement method (FEM); the FEM was also used by Chen and Lin (1983)
to solve arbitrary cracks in a rotating disk; Isida (1981) has used the eigenfunction expan
sion of the complex potentials together with the boundary collocation technique to solve
internal cracks located at arbitrary positions in a disk; the method of caustics was used by
Sukere (1987) to compute the stress intensity factors of internal radial cracks in rota ling
disks. While the boundary element method (BEM) is known to give very accurate solutions
for stationary elastic bodies with cracks. it appears that the only extension of BEM to the
solution ofcracked rotating bodies is the application of Smith (1985), who computed stress
intensity factors for arc cracks in a rotating disk. All the applications alluded to here are
for two-dimensional bodies. Further, the boundary element method used by Smith utilizes
a procedure which requires the evaluation of additional surface integrals. This increases the
computing time considerably when compared to the solution time of the same problem
without body forces.

On the other hand. in the present work, the stress intensity factors are computed using
a recently-developed boundary clement procedure for body forces based on particular
integrals. Since the procedure does not require the evaluation of additional integrals this
process is very ellicient. Further. the analysis is extended for the first time for the solution
of three-dimensional rotating bodies with cracks. The applicability and accuracy of this
BEM procedure for the solution of rotating solids in the presence of cracks are illustrated
by solving a number of two- and three-dimensional problems.

2. STRESS INTENSITY FACTORS

The near crack-tip field in a rotating body is identical in form to the corresponding
field in a stationary body. The crack-tip stresses (Iii due to remote loading may be expressed
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in terms of the distance from the crack tip Ii (sec Fig. I) as

( I )

At the crack tip. the leading term of the stress field expression indicates the usual 1/)/1
singularity. The crack-tip stress field may also be expressed in terms of stress intensity
1~lctors (SI Fs), which arc defined as

(2)

where K,• KII and Kill are the mode I. mode II and mode III stress intensity factors,
respectively. For a given problem, these stress intensity factors may be computed from
known solutions of crack stresses using eqn (2). or from the relative opening displacements
of the crack surfaces. In terms of crack opening displacements Au, = u,lo _. - II, 10 __ .' the
stress intensity factors are

(3)

where. in terms of Young's modulus E and Poisson's ratio y. H = E for the plane stress case
and H = E/(I - y2) for the plane strain and three-dimensional cases. The stresses (or
tractions) and displacements required for the computation of stress intensity factors are
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obtained by solving the given problem as a whole. An elegant procedure that can be used
for the solution of rotating bodies with cracks is the boundary element method.

3. BOUNDARY INTEGRAL EQUATIONS FOR ROTATI:'IiG BODIES

The boundary element method is well suited to the solution of elastic bodies with
cracks since the method intrinsically handles high stress gradients associated with crack
problems effectively. In the presence of body forces. such as the inertial force due to
rotation considered in the present analysis. the integral equation for displacements 11,(e) at a
boundary point ~ may be derived using the fundamental displacement and traction solutions
and the divergence theorem as

where u,(x) and t,(x) are the displacements and tractions at the surface S, bi(y) are the
body forces within the volume V, Gij and F,j are the fundamental displacement and traction
solutions, respectively, due to a set of unit point forces in an infinite homogeneous medium
and e" arc the discontinuity terms that can be evaluated indirectly using the rigid body
translation of the body. A detailed derivation of eqn (4) as well as the expressions for the
fundamental solutions, in both two- and three-dimensional domains, may be found in
Banerjee and Butterfield (\ 981).

One of the major advant'lges of the boundary element method. for linear problems
without body forces, is that the integral equations may be cast over the surface of the body
only. However, for general hody forces, the integral equation involves data within the
problem domain, as seen by eqn (4). Nevertheless. the volume integral due to inertial body
forces may be converted to equivalent surface integrals. Cruse and Wilson (1977) and Rizzo
and Shippy (1977) have used the licld equations due to inertial potential and the divergence
theorem to convert the volume integral to equivalent surl~lce integrals. This procedure was
used by Smith (191\5) to compute stress intensity f~lctors of arc cracks in rotating disks.
However, this procedure requires the evaluation of additional surl~lce integrals that arise
from the transformation of the volume integral to surface integrals. This can be avoided
by using the well-known particular integrals procedure tentatively discussed in the context
of boundary element method by Jaswon and Maiti (1968) and used previously by Pape and
Banerjee (1987) and Banerjee et al. (1988), among others.

To illustrate the particular integral procedure. consider the governing differential
equations for the deformation of a homogeneous body rotating about a fixed axis through
the origin of coordinates. The equations may be expressed in terms of shear modulus It,
Poisson's ratio v, density p and angular velocity (1) as

(5)

where ;. = 2vJt/(1 - 2v).

Let ur be a set ofdisplacement particular solutions of the above governing differential
equations. Using the fundamental solutions and the divergence theorem, an integral equa
tion corresponding to the particular solution field may be derived as

where tr are the traction particular solutions and bi =pw 2x;. The volume integral in eqn
(4) is then eliminated by deducting eqn (6) from (4) to arrive at

(7)
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(8)

The form of the above equation is identical to the corresponding integral equation for the
same problem without body forces, except that eqn (7) requires the knowledge of both
actual and particular displacement and traction fields. Therefore, for known particular
integrals, the solution of eqn (7) is similar to the solution of a problem without body forces
which is rather straightforward.

4. PARTICULAR SOLUTIONS

For a two-dimensional body, rotating about a fixed axis perpendicular to the plane of
the body through the origin, the displacement particular solutions of eqn (5) are given by
Sokolnikoff (1956) as

(9)

Similarly, for a three-dimensional body, rotating about the xraxis, the displacement par
tkular solutions arc given by Banerjee e( al. (1988) as

(10)

The required traction particular solutions are then calculated by using the constitutive law
and Cauchy relationship.

These particular solutions, while not unique, exactly satisfy the governing inhomo
geneous dilli:rential equations. However. any solution to the homogeneous equations can
be added to these particular solutions to form a new set of particular solutions that satisfy
the inhomogeneous equations. Nevertheless. the final solution is entirely independent of
the particular integrals used. provided the chosen particular solutions can be represented
acceptably by the interpolation functions that are used for the approximation of dis
placements and traction fields within each element. Therefore. generally, a basic form of
the particular solutions such as the one given by eqns (9) and (10) is used to minimize the
computing effort.

5. BOUNDARY ELEMENT PROCEDURE FOR FRACTURE MECHANICS

The numerical solution of the boundary integral equation is facilitated by approxi
mating the surface of the body by a finite number of boundary clements and interpolating
displacements ,lOd tractions within each clement by shape functions in terms of nodal
values. Generally. accurate solutions may be obtained by using quadratic shape functions
for the approximation of both geometry and field variables. However. in crack problems.
the accuracy of the solution depends considerably on how well the displacements and
tractions are represented in the vicinity of the crack tip. The generally used quadratic shape
functions provide neither the correct singular representation of the stress field nor the JP
variation of the displacement field. It is well established by Barsoum (1976) in FEM and
Cruse and Wilson (1977) in BEM that by placing the mid-nodes at geometric quarter points
for the sides emanating from the crack. as shown in Fig. 2. the variation of crack opening
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Fig. 2. Typical crack-tip quarter-point element.

displacements is constricted to an asymptotic JP behavior as

1159

(II)

where A, are functions of nodal displacements and I is the element length. Since the tractions
are also approximated by the same interpolations. to simulate the correct singular behavior
of stresses. the nominal tractions l~ obtained from the quarter-point modeling are multiplied
by a non-dimensional parameter ,/U/I') such that

(12)

where 8, are the nodal tractions. The use of quarter-point (QP) clements. for the first row
of elements behind the crack front. and QP clements with traction singular (TS) modi
fication. for the first row elements ahead of the crack front. improves the accuracy of the
BEM solutions considerably as seen by the numerical examples provided later in this text.

It should be noted that unless the problem geometry and loading are symmetrical with
respect to the crack the BEM procedure requires the modeling of co-planar surfaces of the
crack. The numerical solution of non-symmetrical crack problems. by applying the integral
equation directly. is not viable due to the ill-conditioning of the matrix that results from
the modeling of co-planar crack surfaces. A general modeling approach which is effective
for the solution of non-symmetric cracks is the multi-region approach utilized by Blandford
el al. (1981). In the multi-region approach, the body is divided into sub-regions along the
crack surface and the integral equation is applied independently for each region. The final
solution is then obtained by coupling the equations from each region using the compatibility
of displacements and continuity of tractions along the interface of jointed regions. The
multi-region approach not only avoids the ill-conditioning of the matrix but also improves
the solution accuracy and efficiency. The presence of inertial forces does not pose any
additional problem in the multi-region approach since the contribution of the body force
is accounted for via known particular solutions.

6. COMPUTATION OF STRESS INTENSITY FACTORS

The displacements and tractions obtained from the boundary element method can be
used together with eqns (2) and/or (3) to compute the stress intensity factors. It should be
noted that although the tractions t;O at the crack-tip are unbounded. the nominal tractions
i"? are finite since from eqn (12) as p ..... 0

('01 _ r;. {O} - B
\l;-Vi'l - I' ( 13)

Using eqns (2) and (13) together with the relationship between stresses and tractions, the
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Fig. J. Geometry of a radial crack in a rotating disk.

stress intensity factors can be computed from the crack-tip nominal tractions as

{
KI} {i~}
Ku = J2~/ ~~ .
Kill t J

( 14)

Alternatively, the stress intensity factors may also be computed from the crack-opening
displacements using eqn (3). Comparing the stress intensity factors based on tractions and
displacements it is found, in the current analysis, that the values using tractions depend
very much on the accuracy of the numerical integration scheme used for the evaluation of
the higher-order singular integralst involving modified tractions at the crack front elements.
On the other hand, the overall solution as well as the crack-opening displacements are less
sensitive to the accuracy of this integration and therefore the stress intensity factors in the
current analysis are computed from the crack-opening displacements using eqn (3).

7. NUMERICAL EXAMPLES

To validate the analysis and to assess the accuracy of the numerical procedure, an
arbitrarily-located crack in a rotating disk is studied. The location and the dimension of
the crack are fixed by c = ). = 0.5, where c and), are normalized eccentricity and length
parameters, respectively, defined in terms of the problem geometry shown in Fig. 3 as

c = e/R

t The singularity of the kernel to be integrated is increased since using eqn (13).

rG"I, dS == rGil fl i, dS == rG'/'I dS where G" == G,,' fl.J, J, yp Js YP
Therefore. the singularity of Gi , is higher than that of Gil' This additional singularity may be removed by a simple
change of variable such as pZ == p.
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crack-lip crack-tip

Fig. 4. Boundary element model for a radial crack.

Due to symmetry, only one half of the disk is modeled, as shown in Fig. 4. The stress
intensity factors are calculated at both crack tips. These SIFs are normalized with re
spect to (jll~' where (10 is the stress at the center of an uncracked rotating disk. The
radial (1, and hoop (1/1 stresses in an uncracked disk of density p and Poisson's ratio v,
rotating at an angular velocity of w about an axis through the center, are given by Love
(1944) as

p(lJ2 ,
(1, = g(3+v)(R--r2

)

pw2

(11J =T{(3+v)R 2 -(1+3v)r2
}.

At the center of the crack both mdial and hoop stresses reduce to (10 = (3 +v)pw2R2/8. The
normalized slress intensity factors K1•N and Kt•F at the near (N) and far (F) ends from the
center of the disk are compared in Table I to the corresponding solutions of Isida (1981),
who computed the stress intensity factors using the eigenfunction expansion of complex
potentials together with the boundary collocation technique. Three BEM models are used:
in the first model, regular quadratic elements are used everywhere, in the second model,
elements next to the crack tips on both sides are replaced by quarter-point (QP) elements,
and in the final model, QP elements ahead of the crack tips are enhanced by traction
singular (TS) modification. In all three cases, one half of the crack is modeled by using
three boundary elements, the size of the crack-tip element is 5% of the crack length and
the second and third elements are 20% and 25%, respectively, of the crack length. The
reported results show that the solutions using QP elements with TS modification are within
I% of the solutions given by Isida, which are considered to be correct up to the last figures
except for rounding errors.

Table l. Mode I stress intensity factor for various crack
tip elements

BEM
Isida Regular QP QP&TS

kl.N 1.0362 1.0719 0.9973 1.0270
%DIFF -3.4 3.8 0.9
k •.F 0.9404 0.9865 0.9049 0.9344
%D1FF -4.9 3.8 0.6

% DIFF = 100 (k(BEMl-k(Isidal/k(lsidal).
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Having established the validity and accuracy of the solution procedure. the remainder
of the numerical analyses are performed using QP and TS elements at the crack tips. The
disk shown in Fig. 3 is analyzed further by changing the location and size of the crack. The
normalized SIFs computed by the BEM at both crack tips for arbitrary crack length
parameter ;. at eccentricities e are compared in Figs 5 and 6 to the results of Isida. In
addition to the excellent agreement between the present solutions and the eigenfunction
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C .-0.1 tN)
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nonnalzlld crack langlh
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Fig. 7. Mode I SIFs at both crack tips for radial cracks.

Fig. 8. Geometry of an edge crack in a rotating disk.

method results, the figures show that the normalized stress intensity factors increase with
crack length at both crack tips. Further, the results for both ends of the cracks plotted
together in Fig. 7 indicate that while the normalized stress intensity factors at the crack tip
closer to the disk center are larger than the corresponding factors at the other end for small
values of length parameter A, the trend is reversed at large values of A.

The second example examined is the problem of an edge crack in a cylinder under
plane strain condition studied previously by Schneider and Danzer (1989) using the weight
function method. Figures 8 and 9 show the geometry of the problem and the boundary
element map of one half of the disk. The BEM and weight function method stress intensity
factor solutions normalized as in the previous examplet, compared in Fig. 10, show that

t Note that the stress at the center of the uncracked body, under plane strain condition, is obtained from
the previously defined plane stress e~pression of (10 = (3+v)pw 2R 2/8 by replacing v by vl(l-v).
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crack-tip

Fig. 9. Boundary element model for an edge crack.

normallz~ cr1ICk Ienglh (lIIR)

<> v-o.z

2.11

2.•

22

2

1.8

1.11
u.
(;5

I
1.•

12

0.8

0.11

0.•

02

0

0 02

-- S<:hneldrtr & Oanz...

0.• 0.11 0.8

Ii. v-o.3

Fig. 10. Comparison of mode I SIFs for edge cracks.

the agreement between the results is excellent. The results in Fig. 10 are for two different
values of v to indicate the dependence of stress intensity factors on the Poisson's ratio,
which is apparently not elaborated in the cited reference.

Mixed-mode crack problems are studied by computing the stress intensity factors of
arc cracks in a rotating disk. The problem geometry and BEM model of one half of the disk
are shown in Figs II and 12, respectively. Since the geometry and loading are not sym
metrical with respect to the crack, the half disk is modeled as a two-region problem. The
mode I and mode II stress intensity factors are normalized with respect to (Jojnr sin 0,
where (Jo is the radial stress of the uncracked rotating body at a radius of r given by
(Jo = (3+v)pw 2(R 2-r2 )/8. The BEM results are compared in Figs 13 and 14 to the cor
responding solutions obtained"by Smith (1985), who used an alternative BEM formulation
based on transforming the volume integral involving inertial body forces to equivalent
surface integrals. The results show excellent agreement between different BEM formu-
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Fig. II. Geometry of an arc crack in a rotating disk.
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crack-tip

Fig. 12. Multi-region boundilry element model for an arc crack.
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lations, however, the computing time for the present formulation is notably kss than the
time required for the formulation used by Smith.

The three-dimensional HEM procedure for rotating bodies with cracks is validated by
comparing the solution of a rectangular through crack in a cylinder to the corresponding
two-dimensional plane strain result. The problem geometry is shown in Fig. 15 and the
boundary clement model of one quarter of the cylinder for a typical crack kngth is shown
in Fig. 16. The mode I stress intensity factors computed at various depths arc compared lo
the plane strain solutions in Fig. 17. The stress intensity factors and crack lengths arc
normalized with respect to the same parameters as in example 2. The results indicate that
the mode I solutions at various depths remain the same and arc in agreement with the plane
strain solutions, as expected. The results further show that the normalized stress intensity
factors increase with crack length. It should be noted that the stress intensity factors for
the three-dimensional case at all locations arc computed by using the plane strain expression
given by eqn (3) and therefore the true three-dimensional surface clrect is not rclkcted by
these results.

Fig. 15. Geometry of a cylinder with a through crack.
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crack front

Fig. 16. Boundary element model for a cylinder with a through crack.
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The next example investigated is the problem of a circular crack embedded in a finite
cylinder. Figures 18 and 19 show the problem geometry and the boundary element map of
one quarter of the body, respectively. The problem is studied under two conditions: in the
first case the cylinder is restrained at both ends, thus simulating the plane strain condition

'A' 28:9-0



1168 S. T. RAVEE.....ORA and P. K. Bi\:>iERJF.E

H

H

Fig. 18. Geometry of a buried circular crack in a finite cylinder.

crack front

Fig. 19. Boundilfy element model for;\ circular crack.

and in the second case the cylinder is free at both ends. The analytical results for stresses in
an uncracked rotating cylinder under plane strain condition are the same as the previously
reported expressions for a rotating disk with modified v. Moreover. under plane strain
condition. the out-of-plane stress (7= is

pw-:' \' .,"'
(7= = -4 -,-[(3-2v)R--2'-).

-v
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The mode I stress intensity factors computed are normalized with respect to the SIF Kf of
the corresponding stationary crack problem subjected to a uniform crack surface stress of
(Tn. where

The normalized stress intensity factors for different crack sizes, computed for fixed and free
ends. are plotted in Fig. 20. Under plane strain simulated condition, the normalized stress
intensity factors for small cracks are expected to have a magnitude of I. This is due to the
fact that the SIFs are normalized with respect to the out-of-plane stress at the center, which
is approximately eq ual to the stress at the crack surface for small cracks. The stress intensity
factors. however, decrease with increasing crack length since the magnitude of the difference
between 0'0 and 0'; increases with crack length. On the other hand, the normalized SIFs
under free-end condition increase at small values of crack size but decrease at large erack
sizes.

8. CONCLUSIONS

The boundary element method is extended for the solution of cracks in rotating two
and three-dimensional bodies. The volume integral associated with the inertial force is
eliminated by using the particular integral procedure. This solution procedure is very
efficient compared to the transformation procedure which converts the volume integral due
to the inertial force to equivalent surface integrals. The modeling of the crack-tip field is
improved by employing quarter-point elements with traction singular enhancement at the
crack tips. The excellent agreement between the present solutions and the results available
in the literature for two-dimensional problems confirms the validity and applicability of the
current solution technique. The procedure is then extended to solve three-dimensional



1170 S. T. RAVEESDRA and P. K BASERJEE

problems. The increase in solution times for all cases is. typically. less than 10% of the
corresponding solution times for stationary crack problems. thereby highlighting the desir
ability of the current procedure as a practical tool for the solution of crack problems in
rotating bodies.
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